The extended D-Toda hierarchy
نویسندگان
چکیده
In a companion paper ( arXiv:1910.03150 ) to this one, we proved that the Gromov–Witten theory of Fano orbifold line type D is governed by system Hirota Bilinear Equations. The goal prove every solution Equations determines new integrable hierarchy Lax equations. We suggest name extended D-Toda for equations, because it should be viewed as analogue Carlet’s bi-graded Toda hierarchy, which known govern lines A.
منابع مشابه
Virasoro Symmetries of the Extended Toda Hierarchy
We prove that the extended Toda hierarchy of [1] admits nonabelian Lie algebra of infinitesimal symmetries isomorphic to the half of the Virasoro algebra. The generators Lm, m ≥ −1 of the Lie algebra act by linear differential operators onto the tau function of the hierarchy. We also prove that the tau function of a generic solution to the extended Toda hierarchy is annihilated by a combination...
متن کاملSeiberg-Witten Theory and Extended Toda Hierarchy
The quasiclassical solution to the extended Toda chain hierarchy, corresponding to the deformation of the simplest Seiberg-Witten theory by all descendants of the dual topological string model, is constructed explicitly in terms of the complex curve and generating differential. The first derivatives of prepotential or quasiclassical tau-function over the extra times, extending the Toda chain, a...
متن کاملThe Toda Hierarchy and the Kdv Hierarchy
McKean and Trubowitz [2] showed that the theory of the KdV equation ∂ ∂t g(x, t) = ∂ 3 ∂x 3 g(x, t) − 6g(x, t) ∂g ∂x (x, t). is intimately related to the geometry of a related hyperelliptic curve of infinite genus, the Bloch spectrum B g t of the operator L g t : ψ → d 2 dx 2 ψ(x) + g(x, t)ψ(x), where g t = g(x, t). As was known classically, B g t is independent of t, when g(x, t) evolves accor...
متن کاملThe modular hierarchy of the Toda lattice
The modular vector field plays an important role in the theory of Poisson manifolds and is intimately connected with the Poisson cohomology of the space. In this paper we investigate its significance in the theory of integrable systems. We illustrate in detail the case of the Toda lattice both in Flaschka and natural coordinates.
متن کاملInverse Scattering Transform for the Toda Hierarchy
We provide a rigorous treatment of the inverse scattering transform for the entire Toda hierarchy. In addition, we revisit the connection between trace formulas and conserved quantities from the viewpoint of Krein’s spectral shift theory.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Selecta Mathematica-new Series
سال: 2021
ISSN: ['1022-1824', '1420-9020']
DOI: https://doi.org/10.1007/s00029-021-00646-1